Efficient Non-Negative Ranking via Sparsity-Based Transformations – The problem of assigning labels to a class of objects has been gaining much interest in both scientific, engineering and machine learning applications. A special form of this question was considered when the labels of an object are not available or when they are not aligned. In this paper, we propose a novel method to deal with this issue using Sparsely Constrained Convolutional Neural Networks (SCNNs). In our framework, each node in a new object is represented as a pair of sparse, compressed and semi-transparent representations. To resolve the issue of labeling a new node, we propose to use a new CNN model for labeling the model instance and a new model on this instance. We further develop a sparsity-decorated CNN on a new instance to perform the labeling and discuss the usage of this model on various tasks, such as object recognition and segmentation.
Power is a necessary necessity in modern computerized decision-making. In this context, it is necessary to define some common terms for decision making and give appropriate rules for constructing and evaluating rules. This work investigates the formalism of decision-making in the context of polynomial reasoning. The theory of decision-making is given in Part 2.
Learning Unsupervised Object Localization for 6-DoF Scene Labeling
Towards a Theory of True Dependency Tree Propagation
Efficient Non-Negative Ranking via Sparsity-Based Transformations
Deep Generative Models for 3D Point Clouds
The Power of PolynomialsPower is a necessary necessity in modern computerized decision-making. In this context, it is necessary to define some common terms for decision making and give appropriate rules for constructing and evaluating rules. This work investigates the formalism of decision-making in the context of polynomial reasoning. The theory of decision-making is given in Part 2.